

KAROLINA CARVALHO KHATER PEREIRA

PAULA TAÍS REZENDE SANTOS

Análise dos estados limites dominantes de viga em perfil U enrijecido com mesa superior inclinada em 30º aplicado em um telhado de galpão industrial

> Ouro Branco – MG Junho de 2023

KAROLINA CARVALHO KHATER PEREIRA

PAULA TAÍS REZENDE SANTOS

Análise dos estados limites dominantes de viga em perfil U enrijecido com mesa superior inclinada em 30º aplicado em um telhado de galpão industrial

> Trabalho de conclusão de curso apresentado à Coordenação do Curso de Graduação em Engenharia Civil, da Universidade Federal de São João Del-Rei, como requisito parcial para a obtenção do grau de Bacharel em Engenharia Civil.

Orientador: Dr. Lucas Roquete

Ouro Branco – MG Junho de 2023

Ficha catalográfica elaborada pela Divisão de Biblioteca (DIBIB) e Núcleo de Tecnologia da Informação (NTINF) da UFSJ, com os dados fornecidos pelo(a) autor(a)

P436a	Pereira, Karolina Carvalho Khater. Análise dos estados limites dominantes de viga em perfil U enrijecido com mesa superior inclinada em 30° aplicado em um telhado de galpão industrial./ Karolina Carvalho Khater Pereira; Paula Taís Rezende Santos; orientador Lucas Roquete Ouro Branco, MG, 2023. 30 p. il.
	Trabalho de Conclusão (Graduação - Engenharia Civil) - Universidade Federal de São João del-Rei, 2023.
	 Perfil formado a frio 2. Modo de instabilidade 3. Método da seção efetiva 4. Método da resistência direta 5. Resistências de cálculo I. Santos, Paula Taís Rezende. II. Roquete, Lucas, orient. III. Título.

Karolina Carvalho Khater Pereira

Paula Taís Rezende Santos

Análise dos estados limites dominantes de viga em perfil U enrijecido com mesa superior inclinada em 30º aplicado em um telhado de galpão industrial

Trabalho de Conclusão de Curso apresentado à Coordenação do Curso de Graduação em Engenharia Civil, da Universidade Federal de São João Del-Rei, Campus Alto Paraopeba, como requisito parcial para a obtenção do grau de Bacharel em Engenharia Civil.

Aprovado em ____ / ____ / ____

Prof. Dr. Lucas Roquete Amparo (Orientador)

Prof. Me. Anderson Ravik dos Santos - UFSJ (Banca Examinadora)

Eng. Me. Matheus Miranda de Oliveira - UFOP (Banca Examinadora)

AGRADECIMENTOS

A realização desse trabalho só foi possível em virtude dessas pessoas e entidades. Dessa forma, gostaríamos de dedicar nosso muito obrigado a:

Deus, que em sua magnitude nos fez reencontrar depois de anos e anos, fazendo com que nosso caminho fosse grandiosamente protegido a fim de que pudéssemos cursar esses anos de universidade juntas.

Nossos pais e irmãs, que idealizaram conosco esse sonho e hoje podemos realizá-lo nos tornando Engenheiras Civis.

Nossos familiares, parceiros e amigos que nos apoiaram e tiveram paciência, força e sabedoria para nos ajudar nessa caminhada.

Nosso professor orientador Lucas Roquete, que em sua paciência, disponibilidade e alegria, dividiu conosco todo conhecimento necessário para realizarmos esse trabalho. UFSJ e todo corpo docente, pela excelência técnica que nos proporcionou muito aprendizado durante esses anos de curso.

Universidade Federal de São João del-Rei

LISTA DE FIGURAS

Figura 1 - Representação do perfil Ue com a mesa superior inclinada em 30°	8
Figura 2 - Vista longitudinal da estrutura industrial	11
Figura 3 - Vista transversal da estrutura industrial	11
Figura 4 - Galpão industrial em estrutura metálica	12
Figura 5 - Detalhe perfil U utilizado no software	12
Figura 6 - Gráfico comprimento x perfil	21

LISTA DE TABELAS

Tabela 1 - Características perfil U Robot	13
Tabela 2 - Momentos fletores solicitantes nas vigas biapoiadas	14
Tabela 3 - Perfis analisados	14
Tabela 4 - Esforços resistentes MSE x MRD	15
Tabela 5 - Esforços resistentes MSE x MRD e modo de instabilidade	18
Tabela 6 - Comparação de modos de instabilidade	19

LISTA DE SIGLAS

PFF	Perfil Formado a Frio;
MSE	Método da seção efetiva;
MRD	Método da resistência direta;
ABNT	Associação Brasileira de Normas Técnicas;
NBR	Norma Brasileira;
bf	Largura nominal da mesa;
b _w	Largura nominal da alma;
t	Espessura do elemento;
N _c ,R _d	Força axial de compressão resistente de cálculo;
N _c ,S _d	Força axial de compressão solicitante de cálculo;
MR _d	Momento fletor resistente de cálculo;
MS _d	Momento fletor solicitante de cálculo;
kı	Coeficiente de flambagem local.

SUMÁRIO

1.	INTRODUÇÃO	8
2.	METODOLOGIA	9
3.	DESENVOLVIMENTO	10
4.	RESULTADOS E DISCUSSÕES	15
5.	CONCLUSÃO	22
6.	REFERÊNCIAS BIBLIOGRÁFICAS	23
AP	ÊNDICE A	25
AP	ÊNDICE B	30

Análise dos estados limites dominantes de viga em perfil U enrijecido com mesa superior inclinada em 30º aplicado em um telhado de galpão industrial

Pereira, K. C. K.; Santos, P. T. R.; Roquete, L.

Universidade Federal de São João del Rei – UFSJ, Departamento de Tecnologia em Engenharia Civil - DTECH, Ouro Branco – Minas Gerais – Brasil.

RESUMO

O presente trabalho faz o estudo de uma viga metálica de Perfil U enrijecido, com a mesa superior inclinada em 30° não normatizado, aplicado a uma estrutura industrial. Nos trabalhos já realizados, o perfil não normatizado também foi analisado em diferentes espessuras e mostrou-se aplicável na prática, porém a instabilidade predominante foi a flambagem global. Sendo assim, foi avaliada a predominância de flambagem local, por meio da variação de comprimentos e espessura do perfil, para possibilitar a aplicação do Método da Seção Efetiva, em que se pode determinar os valores de resistência do perfil de maneira rápida e prática. Para isso, foram analisadas vigas com 8 comprimentos diferentes, menores que o comprimento de 3,00m utilizado anteriormente e 7 espessuras de perfil. Para a análise dos esforços, fixou-se a carga axial no valor encontrado na análise da estrutura industrial e calculou-se os momentos solicitantes utilizando o software Ftool. Em seguida, fazendo uso dos métodos de cálculo da resistência direta (MRD) e da seção efetiva (MSE), utilizando-se os valores de coeficiente de Flambagem local (k₁) obtidos a partir de equações propostas em trabalhos anteriores e as propriedades geométricas obtidas pelo software GBTUL 2.06 foram calculados os momentos resistentes e as resistências à força axial de compressão. Com os resultados obtidos, e a partir da análise dos fatores de redução do momento (χ) e dos coeficientes de esbeltez (λ), foi possível identificar a instabilidade predominante em cada comprimento e espessura de perfil. Foi desenvolvida uma comparação, envolvendo as variações de tamanho e espessura e os resultados apresentaram que foi possível dimensionar a viga também a partir do método da seção efetiva, desde que os carregamentos sejam menores.

Palavras-chave: Estruturas Metálicas, Modos de falha, Método da Seção Efetiva, Flambagem Local, Perfil Ue.

1. INTRODUÇÃO

A ampla utilização de perfis metálicos na construção civil e a possibilidade de fabricação em variadas seções transversais, motivou o estudo realizado em Roquete *et al.* (2021) em que foi analisada uma tipologia de PFF (Perfil Formado a Frio) em U_e (U Enrijecido) com a mesa superior inclinada em 30°, não padronizada por norma, para aplicação em telhados e coberturas (Figura1).

Figura 1 - Representação do perfil Ue com a mesa superior inclinada em 30°

Os estados limites podem ser analisados como estados limites últimos (ELU) ou estados limites de serviço (ELS). Conforme a NBR 8800:2008 – Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edificações –, os estados limites últimos estão relacionados à segurança da estrutura quando aplicadas às combinações mais desfavoráveis de ações previstas em toda a vida útil da estrutura, durante a construção ou quando uma ação excepcional atuar. Já os estados limites de serviço estão relacionados com o desempenho da estrutura quando submetida a condições normais de utilização.

Anteriormente, foram estudadas dimensões diferentes para seção transversal e comprovou-se a viabilidade de uso do perfil na prática. Entretanto, a instabilidade dominante em todos os perfis foi a flambagem global e, dessa forma, um dimensionamento a partir dos resultados obtidos pelo Método da Seção Efetiva com o coeficiente de flambagem local (k1) proposto não seria eficiente. Não alcançando, assim, o objetivo principal em relação ao uso do método.

O Método da Seção Efetiva proporciona o cálculo da carga axial de compressão de flambagem local, bem como o cálculo do momento fletor que acarreta flambagem local

de um perfil de aço, por intermédio das propriedades geométricas efetivas da seção transversal e, portanto, de maneira rápida e prática, conforme descreve a NBR14762:2010 – Dimensionamento de estruturas de aço constituídas por perfis formados a frio.

Sendo assim, este trabalho tem como objetivo, buscar a predominância de flambagem local como modo de instabilidade nas vigas em uso prático. Avaliando a aplicação da formulação proposta e o efeito da flambagem local no dimensionamento da viga.

2. METODOLOGIA

A etapa inicial para a execução desse material, foi o estudo bibliográfico de artigos anteriores que trataram da temática proposta. Essa etapa foi fundamental no que se refere à compreensão do intuito do perfil, das deduções necessárias para a adoção da metodologia de cálculo, da estrutura real em que foi aplicado, bem como problemas que foram encontrados e que se busca solucionar com o desdobramento deste trabalho.

Após o entendimento de todo o projeto, utilizou-se o *software Robot* (2022), para análise do telhado da estrutura industrial desenvolvida por Júnior, Resende e Roquete (2022), na qual seria aplicado o PFF Ue com mesa inclinada em 30°, estudado anteriormente em Roquete *et al.* (2021). Com a utilização do *software*, pôde-se obter os esforços solicitantes de momento e carga axial.

Para este estudo, a variação dos comprimentos destravados das vigas foi definida como um parâmetro para tentativa de isolar a instabilidade associada à flambagem local. Assim, com o resultado da carga distribuída sobre a viga, *software Robot*, foi necessário o uso do *software Ftool* (2023) para obtenção dos momentos solicitantes resultantes, equivalentes a cada comprimento de viga a ser analisada. Também foi encontrada a carga axial solicitante, a qual será mantida para todos os comprimentos.

As características geométricas, referentes a cada dimensão de seção transversal, foram desenvolvidas por intermédio do *software* GBTUL 2.06 (BEBIANO *et al.*, 2010). Com base nesses dados, avançou-se para o cálculo das resistências a partir do Método da Resistência Direta e do Método da Seção Efetiva, conforme apresenta a ABNT NBR 16239:2013 – Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edificações com perfis tubulares.

O Método da Resistência Direta, utiliza as propriedades da seção bruta do perfil para, por intermédio de análises numéricas ou analíticas, determinar as cargas críticas de flambagem local, distorcional ou global (NBR14762:2010). Os dados necessários para se calcular os esforços resistentes por esse método, foram obtidos também por meio do *software* GBTUL 2.06 (BEBIANO *et al.*, 2010) e com referência nos estudos do artigo Roquete *et al.* (2021).

O Método da Seção Efetiva, permite determinar os esforços resistentes de maneira mais prática. Por meio desse método é possível adquirir os valores da carga axial de compressão e do momento fletor que provocam flambagem local de um perfil de aço, utilizando as propriedades geométricas efetivas da seção transversal da barra. Sendo assim, para atingir o objetivo do trabalho buscou-se a combinação entre as características geométricas para a seção transversal, o comprimento das vigas e a carga solicitante, que permitissem a predominância de flambagem local em uma viga com esse perfil.

Após o desenvolvimento dos cálculos da capacidade resistente aos esforços de flexão e compressão, pôde-se constatar se o perfil seria aplicável com base em suas respectivas dimensões de comprimento e seção transversal. Durante essa etapa foi possível analisar os modos de instabilidade de cada um dos modelos e fazer uma comparação e avaliação desses dados.

3. DESENVOLVIMENTO

Diante do proposto, em Roquete *et al.* (2021) e Júnior e Resende (2022) realizou-se uma aplicação do perfil como terça do telhado de um galpão industrial com dimensões reais conforme é apresentado nas Figuras 2 e 3.

Figura 2 - Vista longitudinal da estrutura industrial

Figura 3 - Vista transversal da estrutura industrial

Para o desenvolvimento deste trabalho, adotou-se como base o perfil proposto por Roquete *et al.* (2021), utilizado para suportar a cobertura de um telhado de estrutura em aço e carga estrutural de 0,75kN/m² aplicado a laje, com medida do vão livre entre as

terças de 3,00m x 3,46m (área igual a 10,38m²), conforme apresenta a Figura 4. Iniciandose o dimensionamento mediante os resultados obtidos pelo software *Robot*.

Figura 4 - Galpão industrial em estrutura metálica

Fonte: Júnior, Resende e Roquete (2022).

A estrutura projetada no *software Robot* (um perfil U laminado a quente) para resistir aos esforços solicitantes está apresentada na Figura 5. Porém, como explica Júnior, Resende e Roquete (2022), o perfil estudado não é normatizado, sendo que a mesa superior inclinada não é um elemento que se possa alterar no software *Robot*. Assim, para um prédimensionamento utilizou o mesmo princípio adotado por Júnior, Resende e Roquete (2022), aplicar um perfil U padrão do software e obter as solicitações. Na Figura 5 é apresentado o perfil aplicado na viga de cobertura.

Fonte: Robot (2023).

É demonstrado na Tabela 1 as características geométricas, força axial e momento fletor do perfil com a melhor solução, apresentado pelo software Robot.

Perfil	bw[mm]	bf[mm]	tw[mm]	tf[mm]	D[mm]	Iy[mm ⁴]	A[mm ²]	Wc[mm ³]
U	203	64	1,2	1	0	18272600	3555	16430
Axia	l de compr	essão	68,3	6 kN				
Mome	ento Fletor	· em Y	3,91	kN.m				

Tabela 1 - Características perfil U Robot

Fonte: Júnior, Resende e Roquete (2022)

Com base nos dados iniciais adotados e com NBR14762:2010, calculou-se a carga aplicada para a viga de 3,00m de comprimento destravado apresentada no projeto inicial, conforme a Equação 1.

$$P = \frac{(q.A)}{2}$$
(Equação 1)

Onde:

P é a carga distribuída na viga (em kN/m);

q é a carga distribuída na laje (igual a 0,75kN/m²);

A é a área da laje (igual a 10,38m²).

Dessa forma, encontra-se que P é igual a 3,89kN/m.

De posse desse dado, foram calculados os momentos fletores solicitantes de cada comprimento destravado proposto para a viga biapoiada em estudo por intermédio da Equação 2 e dos comprimentos destravados adotados para análise de: 2,80m; 2,40m; 2,00m; 1,80m; 1,60m; 1,50m; 1,30m e 1,00m.

$$M = \frac{(q.l^2)}{8}$$
(Equação 2)

Onde:

M é o momento fletor solicitante da viga (em kN.m);

q é a carga distribuída na viga (em kN/m²);

l é o comprimento destravado da viga (em metro).

Com os comprimentos definidos, o próximo passo realizado foi a utilização do software *Ftool* para cálculo dos momentos fletores solicitantes para os comprimentos destravados definidos. Com isso, encontrou-se os seguintes resultados descriminados na Tabela 2:

Comprimento (m)	Momento Fletor (kN.m)
2,80	3,81
2,40	2,80
2,00	1,95
1,80	1,58
1,60	1,25
1,50	1,09
1,30	0,82
1,00	0,49

Tabela 2 - Momentos fletores solicitantes nas vigas biapoiadas

Obtidos os parâmetros iniciais definidos na Tabela 2, para realização das comparações e avaliações dos esforços, foram definidos sete perfis Ue formados a frio com mesa inclinada em 30° calculados por meio do software GBTUL 2.06, com variações geométricas, conforme apresenta a Tabela 3.

Perfil	D[mm]	bw[mm]	bf[mm]	tw[mm]	tf[mm]	Iy[mm4]	A[mm ²]	Wc[mm ³]
1	15	75	40	2,65	2,65	677529,6	506,6	15642,31
2	17	100	35	2,25	2,25	767050,1	471,19	16751,67
3	17	100	40	2	2	910793,3	440,38	16377,58
4	15	75	40	3	3	767050,1	573,6	17709,09
5	17	100	40	2,25	2,25	1024512	495,42	18423,46
6	17	100	40	3	3	1366088	660,56	24565,91
7	17	100	50	1,2	1,2	667566,9	290,1	11695,67

Tabela 3 - Perfis analisados

Para o dimensionamento, realizou-se as verificações conforme as prescrições da ABNT NBR 14762:2010 pelo MSE e MRD, comparando as resistências dos perfis com suas cargas solicitantes, utilizando a formulação do coeficiente de flambagem local (k₁) proposto por Roquete *et al.* (2021), onde na situação de o perfil proposto não atender algum dos métodos de cálculo, ele será reprovado iniciando-se às verificações no perfil seguinte utilizando-se os mesmos parâmetros de cálculo.

4. RESULTADOS E DISCUSSÕES

Por intermédio do programa *Excel* foram obtidos os resultados dos esforços resistentes para os métodos de cálculo MRD e MSE, perfil e comprimentos destravados analisados. Os resultados de N_c,Rd e MRd encontrados para cada método e a relação entre eles está resumido na Tabela 4.

	Comprimento 2,80m								
	Método da Seção		Méto	do da					
PERFIL	Efetiva		Resistência Direta		N _{c,Rd} - _{MSE} /	${ m M_{Rd}}$ - $_{ m MSE}$ /			
	N _{c, Rd}	M _{Rd}	N _{c, Rd}	M _{Rd}	Nc,Rd - MRD	$\mathbf{M}_{\mathbf{Rd}}$ - MRD			
	(k N)	(kN.m)	(kN)	(kN.m)					
1	77,361	2,974	84,394	2,974	0,917	1,00			
2	79,33	3,306	86,542	3,306	0,917	1,00			
3	75,044	3,359	81,866	3,359	0,917	1,00			
4	87,575	3,368	95,536	3,368	0,917	1,00			
5	84,425	3,779	92,1	3,779	0,917	1,00			
6	105,272	4,653	114,843	4,653	0,917	1,00			
7	37,443	2,22	40,939	2,448	0,915	0,91			
		1	Con	nprimento	2,40m				
	Método o	la Secão	Méto						
		au Beçub	101000	uouu	No Rd - MSF				
PERFIL	Efet	tiva	Resistênc	cia Direta	Nc,Rd - MSE	MRd - MSE /			
PERFIL	Efet Nc, Rd	tiva MRd	Resistênc Nc, Rd	zia Direta MRd	Nc,Rd - MSE / Nc Rd - MRD	MRd - MSE / MRd - MRD			
PERFIL	Efet Nc, Rd (kN)	tiva MRd (kN.m)	Resistênc Nc, Rd (kN)	zia Direta MRd (kN.m)	Nc,Rd - MSE / Nc,Rd - MRD	MRd - MSE / MRd - MRD			
PERFIL	Efet Nc, Rd (kN) 84,008	tiva MRd (kN.m) 3,232	Resistênc Nc, Rd (kN) 91,646	ia Direta MRd (kN.m) 3,232	Nc,Rd - MSE / Nc,Rd - MRD 0,917	MRd - MSE / MRd - MRD 1,00			
PERFIL 1 2	Efet Nc, Rd (kN) 84,008 83,942	tiva MRd (kN.m) 3,232 3,55	Resistênc Nc, Rd (kN) 91,646 91,574	ia Direta MRd (kN.m) 3,232 3,55	Nc,Rd - MSE / Nc,Rd - MRD 0,917 0,917	MRd - MSE / MRd - MRD 1,00 1,00			
PERFIL 1 2 3	Efet Nc, Rd (kN) 84,008 83,942 79,153	tiva MRd (kN.m) 3,232 3,55 3,564	Resistênc Nc, Rd (kN) 91,646 91,574 86,349	ia Direta MRd (kN.m) 3,232 3,55 3,564	Nc,Rd - MSE / Nc,Rd - MRD 0,917 0,917 0,917	MRd - MSE / MRd - MRD 1,00 1,00 1,00			
PERFIL 1 2 3 4	Efet Nc, Rd (kN) 84,008 83,942 79,153 95,101	tiva MRd (kN.m) 3,232 3,55 3,564 3,659	Resistênc Nc, Rd (kN) 91,646 91,574 86,349 103,747	ia Direta MRd (kN.m) 3,232 3,55 3,564 3,659	Nc,Rd - MSE / Nc,Rd - MRD 0,917 0,917 0,917 0,917	MRd - MSE / MRd - MRD 1,00 1,00 1,00 1,00			
PERFIL 1 2 3 4 5	Efet Nc, Rd (kN) 84,008 83,942 79,153 95,101 89,048	tiva MRd (kN.m) 3,232 3,55 3,564 3,659 4,01	Resistênc Nc, Rd (kN) 91,646 91,574 86,349 103,747 97,143	ia Direta MRd (kN.m) 3,232 3,55 3,564 3,659 4,01	Nc,Rd - MSE / Nc,Rd - MRD 0,917 0,917 0,917 0,917 0,917	MRd - MSE / MRd - MRD 1,00 1,00 1,00 1,00 1,00			
PERFIL 1 2 3 4 5 6	Efet Nc, Rd (kN) 84,008 83,942 79,153 95,101 89,048 113,028	tiva MRd (kN.m) 3,232 3,55 3,564 3,659 4,01 5,063	Resistênc Nc, Rd (kN) 91,646 91,574 86,349 103,747 97,143 123,303	MRd (kN.m) 3,232 3,55 3,564 3,659 4,01 5,063	Nc,Rd - MSE / Nc,Rd - MRD 0,917 0,917 0,917 0,917 0,917 0,917	MRd - MSE / MRd - MRD 1,00 1,00 1,00 1,00 1,00 1,00			
PERFIL	Efet Nc, Rd (kN) 84,008 83,942 79,153 95,101 89,048 113,028 38,642	tiva MRd (kN.m) 3,232 3,55 3,564 3,659 4,01 5,063 2,391	Resistênc Nc, Rd (kN) 91,646 91,574 86,349 103,747 97,143 123,303 42,25	tia Direta MRd (kN.m) 3,232 3,55 3,564 3,659 4,01 5,063 2,527	Nc,Rd - MSE / Nc,Rd - MRD 0,917 0,917 0,917 0,917 0,917 0,917 0,917 0,915	MRd - MSE / MRd - MRD 1,00 1,00 1,00 1,00 1,00 1,00 0,95			
PERFIL	Efet Nc, Rd (kN) 84,008 83,942 79,153 95,101 89,048 113,028 38,642	tiva MRd (kN.m) 3,232 3,55 3,564 3,659 4,01 5,063 2,391	Resistênc Nc, Rd (kN) 91,646 91,574 86,349 103,747 97,143 123,303 42,25 Con	tia Direta MRd (kN.m) 3,232 3,55 3,564 3,659 4,01 5,063 2,527 mprimento	Nc,Rd - MSE / Nc,Rd - MRD 0,917 0,917 0,917 0,917 0,917 0,917 0,915 2,00m	MRd - MSE / MRd - MRD 1,00 1,00 1,00 1,00 1,00 1,00 0,95			
PERFIL	Efet Nc, Rd (kN) 84,008 83,942 79,153 95,101 89,048 113,028 38,642 Método d	tiva MRd (kN.m) 3,232 3,55 3,564 3,659 4,01 5,063 2,391 da Seção	Resistênc Nc, Rd (kN) 91,646 91,574 86,349 103,747 97,143 123,303 42,25 Con Métor	tia Direta MRd (kN.m) 3,232 3,55 3,564 3,659 4,01 5,063 2,527 nprimento do da	Nc,Rd - MSE / Nc,Rd - MRD 0,917 0,917 0,917 0,917 0,917 0,917 0,915 2,00m Nc,Rd - MSE /	MRd - MSE / MRd - MRD 1,00 1,00 1,00 1,00 1,00 1,00 0,95 MRd - MSE /			

Tabela 4 - Esforços resistentes MSE x MRD (continua)

DEDEII	Nc, Rd	MRd	Nc, Rd	MRd		
I LAFIL	(k N)	(kN.m)	(k N)	(kN.m)		
1	90,078	3,45	98,266	3,45	0,917	1,00
2	88,054	3,757	96,059	3,757	0,917	1,00
3	82,806	3,722	90,334	3,722	0,917	1,00
4	101,973	3,906	111,243	3,906	0,917	1,00
5	93,157	4,187	101,626	4,187	0,917	1,00
6	120,034	5,409	130,946	5,409	0,917	1,00
7	39,684	2,312	43,391	2,551	0,915	0,91
			Con	nprimento	1,80m	I
	Método o	da Seção	Méto	do da	No Dd MSE	
PERFIL	Efet	tiva	Resistênc	cia Direta	INC, KU - MISE	MRd - MSE /
	Nc, Rd	MRd	Nc, Rd	MRd	Nc.Rd - MRD	MRd - MRD
	(kN)	(kN.m)	(kN)	(kN.m)		
1	92,832	3,545	101,271	3,545	0,917	1,00
2	89,891	3,807	98,063	3,807	0,917	1,00
3	84,435	3,722	92,111	3,722	0,917	1,00
4	105,092	4,013	114,646	4,013	0,917	1,00
5	94,99	4,187	103,625	4,187	0,917	1,00
6	123,193	5,559	134,392	5,559	0,917	1,00
7	40,143	2,312	43,892	2,551	0,915	0,91
			Con	nprimento	1,60m	
	Método o	da Seção	Méto	do da	Nc.Rd - MSE	
PERFIL	Efet	tiva	Resistênc	cia Direta	/	MRd - MSE /
	Nc, Rd	MRd	Nc, Rd	MRd	Nc,Rd - MRD	MRd - MRD
	(kN)	(kN.m)	(kN)	(kN.m)		
1	95,368	3,555	104,038	3,555	0,917	1,00
2	91,567	3,807	99,891	3,807	0,917	1,00
3	85,919	3,722	93,73	3,722	0,917	1,00
4	107,963	4,025	117,778	4,025	0,917	1,00
5	96,66	4,187	105,447	4,187	0,917	1,00
6	126,089	5,583	137,552	5,583	0,917	1,00
7	40,557	2,312	44,345	2,551	0,915	0,91

Tabela 4 - Esforços resistentes MSE x MRD (continua)

	Comprimento 1,50m								
	Método o	la Seção	Método da		N-DJ MCE				
PERFIL	Efetiva		Resistênc	cia Direta	NC,KA - MISE	MRd - MSE /			
	Nc, Rd	MRd	Nc, Rd	MRd		MRd - MRD			
	(kN)	(kN.m)	(kN)	(kN.m)	NC,Rd - MRD				
1	96,547	3,555	105,324	3,555	0,917	1,00			
2	92,342	3,807	100,736	3,807	0,917	1,00			
3	86,605	3,722	94,478	3,722	0,917	1,00			
4	109,298	4,025	119,234	4,025	0,917	1,00			
5	97,431	4,187	106,288	4,187	0,917	1,00			
6	127,432	5,583	139,017	5,583	0,917	1,00			
7	40,747	2,312	44,553	2,551	0,915	0,91			
		L	Con	nprimento	1,30m				
	Método o	da Seção	Méto	do da	No Dd MSE				
PERFIL	Efet	tiva	Resistênc	cia Direta	/	MRd - MSE /			
	Nc, Rd	MRd	Nc, Rd	MRd	No Pd - MPD	MRd - MRD			
	(k N)	(kN.m)	(kN)	(kN.m)	NC,KU - WIKD				
1	98,714	3,555	107,688	3,555	0,917	1,00			
2	93,757	3,807	102,281	3,807	0,917	1,00			
3	87,788	3,722	95,844	3,722	0,916	1,00			
4	111,751	4,025	121,91	4,025	0,917	1,00			
5	98,839	4,187	107,825	4,187	0,917	1,00			
6	129,894	5,583	141,703	5,583	0,917	1,00			
7	41,093	2,312	44,931	2,551	0,915	0,91			
			Con	nprimento	1,00m				
	Método o	da Seção	Méto	do da	Nc.Rd - MSE				
PERFIL	Efet	tiva	Resistênc	cia Direta	/	MRd - MSE /			
	Nc, Rd	MRd	Nc, Rd	MRd	Nc.Rd - MRD	MRd - MRD			
	(kN)	(kN.m)	(kN)	(kN.m)					
1	101,451	3,555	110,673	3,555	0,917	1,00			
2	95,531	3,807	104,216	3,807	0,917	1,00			
3	88,865	3,722	97,058	3,722	0,916	1,00			
4	114,85	4,025	125,291	4,025	0,917	1,00			

Tabela 4 - Esforços resistentes MSE x MRD (continua)

5	100,603	4,187	109,748	4,187	0,917	1,00
6	132,993	5,583	145,084	5,583	0,917	1,00
7	41,523	2,312	45,401	2,551	0,915	0,91

Tabela 4 - Esforços resistentes MSE x MRD (conclusão)

Comparando os valores de resistência à compressão axial obtidos pelo MRD e os valores obtidos pelo MSE observou-se que a relação de MSE / MRD conforme apresentado na Tabela 4, teve média entre elas de 0,917, valor muito próximo de 1,00. Indicando uma boa relação entre os resultados obtidos.

Já a relação de resistência ao momento fletor para os métodos MSE e MRD, os valores apresentados foram iguais, dessa forma, média obtida é igual a 1,00. Essa igualdade se dá em virtude do dimensionamento, em ambos os métodos, serem realizados em função da predominância de flambagem global. Somente o perfil 7 não apresenta relação de MSE / MRD igual a 1,00. Sendo a média desse perfil igual a 0,915. Porém, ainda assim o perfil apresenta boa relação entre os dois métodos de cálculo.

Mesmo com as reduções de comprimentos destravados para os sete perfis inicialmente propostos não foi possível isolar a flambagem local. Esse isolamento de modo de instabilidade só foi de fato observado quando proposto fixar as dimensões do perfil 7 e comprimento o destravado da viga em 2,80m, realizando iterações somente nos esforços solicitantes.

Dessa forma, foram aplicados esforços solicitantes de compressão e momento fletor inferiores aos analisados anteriormente, até que fosse possível alcançar a aceitabilidade do perfil e a instabilidade predominante de flambagem local, conforme resultado apresentado na Tabela 5.

	Comprimento 2,80m						
PERFIL	Método da Seção Efetiva		Método da Resistência Direta		Nc,Rd - MSE	MRd - MSE /	
	Nc, Rd (kN)	MRd (kN.m)	Nc, Rd (kN)	MRd (kN.m)	Nc,Rd - MRD	MRd - MRD	

Tabela 5 - Esforços resistentes MSE x MRD e modo de instabilidade (continua)

7	37,44	2,22	40,94	2,45	0,915	0,906
-	Aceito	Aceito	Aceito	Aceito	Flambag	gem Local

Tabela 5 - Esforços resistentes MSE x MRD e modo de instabilidade (conclusão)

Os modos de instabilidade dominantes apresentados para os sete perfis propostos inicialmente, nos variados comprimentos propostos, bem como a aceitabilidade ou não desses, foram determinados em função da relação entre esforços solicitantes e resistentes (Nc,Sd/Nc,Rd e MSd/MRd), conforme apresentado na Tabela 4, e encontram-se resumidos na Tabela 6.

	Comprimento 2,80m			Comprimento 2,40m		
		Verificaçã	ão entre os		Verificaçã	io entre os
PERFIL	Modo de	mét	odos	Modo de	mét	odos
	instabilidade	Nc,Sd <=	MSd <=	instabilidade	Nc,Sd <=	MSd <=
		Nc,Rd	MRd		Nc,Rd	MRd
1	FLT Inel.	Aceito	Não aceito	FLT Inel.	Aceito	Aceito
2	FLT Inel.	Aceito	Não aceito	FLT Inel.	Aceito	Aceito
3	FLT Inel.	Aceito	Não aceito	FLT Inel.	Aceito	Aceito
4	FLT Inel.	Aceito	Não aceito	FLT Inel.	Aceito	Aceito
5	FLT Inel.	Aceito	Não aceito	FLT Inel.	Aceito	Aceito
6	FLT Inel.	Aceito	Aceito	FLT Inel.	Aceito	Aceito
7	Fl. Local	Não aceito	Não aceito	Fl. Local	Não aceito	Não aceito
	Cor	nprimento 2,	00m	Comprimento 1,80m		
		Verificaçã	ão entre os		Verificaçã	io entre os
PERFIL	Modo de	mét	odos	Modo de	mét	odos
	instabilidade	Nc,Sd <=	MSd <=	instabilidade	Nc,Sd <=	MSd <=
		Nc,Rd	MRd		Nc,Rd	MRd
1	FLT Inel.	Aceito	Aceito	FLT Inel.	Aceito	Aceito
2	FLT Inel.	Aceito	Aceito	Plastif.	Aceito	Aceito
3	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
4	FLT Inel.	Aceito	Aceito	FLT Inel.	Aceito	Aceito
5	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
6	FLT Inel.	Aceito	Aceito	FLT Inel.	Aceito	Aceito
7	Plastif.	Não aceito	Aceito	Plastif.	Não aceito	Aceito
PERFIL	Comprimento 1,60m			Con	nprimento 1,	50m

Tabela 6 - Comparação de modos de instabilidade (continua)

		Verificaçã	ão entre os		Verificaçã	o entre os
PERFIL	Modo de	mét	odos	Modo de	méte	odos
	instabilidade	Nc,Sd <=	MSd <=	instabilidade	Nc,Sd <=	MSd <=
		Nc,Rd	MRd		Nc,Rd	MRd
1	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
2	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
3	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
4	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
5	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
6	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
7	Plastif.	Não aceito	Aceito	Plastif.	Não aceito	Aceito
	Con	nprimento 1,30m		Comprimento 1,00m		
		Verificaçã	ăo entre os		Verificaçã	o entre os
PERFIL	Modo de	mét	odos	Modo de métodos		odos
	instabilidade	Nc,Sd <=	MSd <=	instabilidade	Nc,Sd <=	MSd <=
		Nc,Rd	MRd		Nc,Rd	MRd
1	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
2	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
3	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
4	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
5	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito
6	Plastif.	Aceito	Aceito	Plastif.	Aceito	Aceito

Tabela 6 - Comparação de modos de instabilidade (conclusão)

Onde as abreviações são determinadas por:

FLT Inel. → Flambagem Lateral por Torção Inelástica;

Fl. Local \rightarrow Flambagem Local (seja ela da Alma ou da Mesa);

Plastif. \rightarrow Plastificação total da seção transversal.

Os modos de falha dominantes dos perfis 1, 4 e 6 seguiram um padrão onde, na mudança de comprimento destravado de 1,60m para 1,80m, esses deixaram de apresentar Plastificação da Seção Transversal e passaram a apresentar FLT Inelástica. Já os perfis 2, 3 e 5 apresentaram Plastificação da Seção Transversal até os comprimentos de 1,80m, 2,00m e 2,00m quando passaram, então, a apresentar FLT Inelástica. O perfil 7 foi o único, dentro dos comprimentos destravados propostos, a não apresentar FLT Inelástica.

Sendo assim, ele apresentou Plastificação da Seção Transversal até o comprimento de 2,00m e para 2,40m e 2,80 passou a apresentar Flambagem Local. Conforme apresenta o gráfico da Figura 6.

Figura 6 - Gráfico comprimento x perfil

Onde:

Flamb. local \rightarrow Flambagem local;

FLT Inel. \rightarrow FLT Inelástica;

Plastificação → Plastificação da Seção Transversal.

Dessa forma, observou-se que para a viga de comprimento 2,8m submetida as solicitações mencionadas, os perfis de 1 a 5 analisados apresentaram FLT inelástica como modo dominante, conforme apresenta a Figura 6, e resultados satisfatórios para os esforços normais tendo somente limitações quanto a resistência aos esforços de momento fletor, não sendo, com isso, aceitos para aplicação. Para esse comprimento, somente o perfil 6 pode ser usado. Apresentando como modo de falha dominante a FLT Inelástica e aplicabilidade tanto para os esforços normais quanto para o momento fletor. Isso se torna verdade, pois a seção transversal do perfil 6 é mais robusta que as demais.

Já o perfil 7 com comprimento de 2,80m apresentou resistências de 37,44kN (NcRd) e 2,22kN.m (MRd) para o MSE e 40,94kN (NcRd) e 2,45kN.m (MRd) para o MRD. E com comprimento de 2,40m apresentou resistências de 38,64kN (NcRd) e 2,39kN.m (MRd) para o MSE e 42,25kN (NcRd) e 2,53kN.m (MRd) para o MRD, dessa forma, a instabilidade dominante apresentada nesses dois comprimentos foi de flambagem local

conforme apresenta a Tabela 5. Porém esse perfil não foi aceito em nenhuma das condições, evidenciando a esbeltez da seção transversal. E, portanto, não apresenta resistências suficientes aos esforços nela aplicados.

Para o comprimento da viga de 2,40m, os perfis 1 a 6 ainda apresentam flambagem lateral por torção (FLT Inelástica) e passaram a ser aceitos tanto para os esforços axiais como para os de momento fletor. Nesse comprimento destravado, somente o perfil 7 apresenta flambagem local, e conforme é apresentado nas Tabelas 4 e 6 ainda continua sendo recusado para uso nas condições avaliadas. Entretanto, como discorrido, quando proposto esforços solicitantes inferiores aos iniciais, ele torna-se aceito, aplicável pra uso e apresenta flambagem local como instabilidade dominante, conforme indica a Tabela 5.

A partir do comprimento de 2,00m os perfis de menor espessura começaram a apresentar plastificação. Para esse comprimento ainda, o perfil de menor espessura proposto (Perfil 7) apresentou resistência ao momento fletor, porém não apresentou resistência axial desejada em nenhum dos comprimentos calculados. Evidenciando que, mesmo com as condições propostas esse perfil não pode ser aplicado ao modelo estudado.

As vigas de comprimentos menores ou iguais a 1,60m apresentaram como modo de falha dominante a plastificação total da seção transversal ilustrando que, a partir desse ponto, elas deixam de ser esbeltas e passam a se caracterizar como compactas, não sendo mais dimensionadas a partir da carga crítica de flambagem, e passam a ser dimensionadas a partir da tensão de escoamento, sem fazer usos das propriedades efetivas.

5. CONCLUSÃO

Diante do objetivo proposto para este trabalho, foram planilhados e executados os cálculos que tinham como base os métodos de cálculo MRD e MSE. As características geométricas e os resultados de esforços resistentes obtidos para cada perfil e comprimento destravados proposto estão apresentados nas tabelas do Apêndice A.

Por meio dos resultados obtidos a partir das simulações de cálculos realizados no PFF Ue de mesa inclinada em 30° não normatizado, foi possível inferir que devido as diferenças geométricas, características de cada perfil e comprimento destravado estudados, os modos

de falha observados variaram entre FLT Inelástica, Flambagem Local e Plastificação Total da Seção Transversal.

Foi possível observar ainda, que os perfis se tornaram mais resistentes à medida que os comprimentos adotados para a viga se tornavam menores. De forma que a partir do comprimento de 1,60m todos eles apresentaram plastificação total da seção transversal.

Além disso, as vigas de comprimento menores ou iguais a 2,40m foram consideradas resistentes aos esforços solicitantes nos dois métodos de cálculo analisados, de maneira que, somente o perfil mais esbelto (perfil 7 com 1,2mm de espessura) não foi considerado resistente a esses esforços para nenhuma das condições propostas inicialmente no estudo de resistência axial, resistindo somente ao momento fletor, conforme é apresentado na Tabela 4.

Somente quando proposto um perfil com b_f igual a 0,05m; b_w igual a 0,1m; t igual a 0,0012m, Nc,Sd igual a 37,44kN e M,Sd igual a 2,2kN.m, conforme detalhado no Apêndice B (Perfil 7 - proposto com novo carregamento), é que se tornou possível isolar o modo de falha de flambagem local, de maneira que o perfil suportasse as solicitações submetidas, atendendo, assim, o objetivo principal deste trabalho.

Com isso, conclui-se que para o dimensionamento da viga considerando a flambagem local é preciso utilizar perfis de seção transversal esbeltas e de comprimentos destravados próximo aos 3,00m inicialmente analisado, pois à medida que os comprimentos diminuíam a viga se tornava mais compacta atingindo a tensão de escoamento antes de apresentar qualquer tipo de flambagem. Além disso, é preciso que o carregamento nela aplicado seja menor do que o utilizado inicialmente para que as tensões resistentes sejam maiores que as solicitantes fazendo com que o perfil atenda o modo de falha proposto por este trabalho.

6. REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. **Dimensionamento de estruturas de aço constituídas por perfis formados a frio**. NBR14762:2010. Rio de Janeiro. 2010. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. Informação e documentação – Citações em documentos – Apresentação – NBR10520:2002. Rio de Janeiro. 2002.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. Informação e documentação — Referências — Elaboração – NBR 6023:2018. Rio de Janeiro. 2018. AUTODESK, AutoCad. Versão 2019. [S.I.]: Autodesk, 2023.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. **Projeto de** estruturas de aço e de estruturas mistas de aço e concreto de edificações – NBR 8800:2008. Rio de Janeiro. 2008.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT. Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edificações com perfis tubulares – NBR 16239:2013. Rio de Janeiro. 2013.

AUTODESK, AutoCad. Versão 2019. [S.I.]: Autodesk, 2023.

AUTODESK, Robot Structural Analysis Professional. Versão 2023. [S.I.]: Autodesk, 2023.

BEBIANO, R.; SILVESTRE, N.; CAMOTIM, D., 2010. **GBT theoretical background**. Disponível em: http://www.civil.ist.utl.pt/gbt/. Acesso em: 14 de abril de 2023.

FTOOL. **Programa gráfico-interativo de Engenharia Civil desenvolvido para auxiliar no ensino do comportamento estrutural de pórticos planos**. Acesso em: 15 de abril de 2023.

JÚNIOR, C. F. A DE S.; RESENDE, J. L. O.; ROQUETE, L. Análise das resistências de viga em perfil U enrijecido com mesa superior inclinada em 30° aplicado em um telhado de galpão industrial. Ouro Branco, 2022.

ROQUETE, L.; OLIVEIRA, M. M. de; COSTA, F. N. da S.; MARINHO, L. V.; SARMANHO, A. M. C. Local buckling coefficient for thin-walled lipped channel section with top flange inclined. Research, Society and Development. 2021. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/20254>. Acesso em 02 de março de 2023.

APÊNDICE A

• Características dos perfis utilizados e esforços solicitantes.

Perfil 1				
SOLIC	TANTE (RETIRADO DO	ROBOT)		
My,Sd=	3,8146	kN.m		
Nc,Sd=	68,36	kN.m		
	250000	Кра		
	σ=M/W -> W=M/f	y		
w=	1,52584E-05	m ³		
w=	15258,40	mm ³		

DADOS DE ENTRADA					
fy=	250000	kPa			
v=	0,3				
ly=	6,77653E-07	m^4			
L=	?	m			
bw=	0,075	m			
bf=	0,04	m			
t=	0,00265	m			
E=	20000000	kPa			
Área seção:	0,000507	m²			
lz=	1,27539E-07	m^4			
ry=	-0,021	m			
rz=	0,032	m			
y0=	0,0152927	m			
z0=	0,043317	m			

Perfil 2	2
----------	---

SOLICITANTE (RETIRADO DO ROBOT)					
My,Sd=	3,8122	kN.m			
Nc,Sd=	68,36	kN.m			
	250000	Кра			
σ=M/W -> W=M/fy					
w=	1,52488E-05	m³			
w=	15248,80	mm³			

DADOS DE ENTRADA					
fy=	250000	kPa			
v=	0,3				
ly=	9,19331E-07	m^4			
L=	?	m			
bw=	0,1	m			
bf=	0,035	m			
t=	0,00225	m			
E=	20000000	kPa			
Área seção:	0,000471	m²			
lz=	9,42509E-08	m^4			
ry=	-0,0011	m			
rz=	0,04527	m			
y0=	0,01198	m			
z0=	0,05488	m			

PERFIL PROPOSTO ESCOLHIDO				
Perfil 1	15642.21			
(t=2,65mm) w=	15042,51	mm³		
PROPRIEDADES GEOMETRICAS (GBTUL)				
MI=	41701,26	kN*mm		
Mdist=	15738,23	kN*mm		
NI=	607,01	kN		
Ndist=	504,18	kN		

PERFIL PROPOSTO ESCOLHIDO					
Perfil 2	10751.07				
(t=2,25mm) w=	10/51,0/	mm³			
PROPF	PROPRIEDADES GEOMETRICAS (GBTUL)				
MI= 37630,13 kN*mm					
Mdist=	20038,19	kN*mm			
NI= 243,970 kN					
Ndist=	328,56	kN			

Perfil 3

SOLICITANTE (RETIRADO DO ROBOT)							
My,Sd=	3,8122	kN.m					
Nc,Sd=	68,36	kN.m					
	250000	Кра					
	σ=M/W -> W=M/fy						
w=	1,52488E-05	m³					
w=	15248,80	mm³					

DADOS DE ENTRADA		
fy=	250000	kPa
v =	0,3	
ly=	9,10793E-07	m^4
L=	?	m
bw=	0,1	m
bf=	0,04	m
t=	0,002	m
E=	20000000	kPa
Área seção:	0,000440	m²
lz=	1,12677E-07	m^4
ry=	-0,020	m
rz=	0,04465	m
y0=	0,014	m
z0=	0,05561	m

PERFIL PROPOSTO ESCOLHIDO		
Perfil 3	10277 59	
(t=2,00mm) w=	10377,58	mm³
PROPRIEDADES GEOMETRICAS (GBTUL)		
MI=	24082,77	kN*mm
Mdist=	13463,73	kN*mm
NI=	175,38	kN
Ndist=	256,03	kN

SOLICITANTE (RETIRADO DO ROBOT) My,Sd= 3,8122 kN.m Nc,Sd= 68,36 kN.m 250000 Kpa σ=M/W -> W=M/fy w= 1,52488E-05 m³ w= 15248,80 mm³

DADOS DE ENTRADA			
fy=	250000	kPa	
v=	0,3		
ly=	7,6705E-07	m^4	
L=	?	m	
bw=	0,075	m	
bf=	0,04	m	
t=	0,003	m	
E=	20000000	kPa	
Área seção:	0,000574	m²	
lz=	1,44443E-07	m^4	
ry=	-0,021	m	
rz=	0,032	m	
y0=	0,0152927	m	
z0=	0.043317	m	

F	PERFIL PROPOSTO ESCOLHIDO		
Perfil 4 (t=3,0m)	17700 1		
w=	17709,1	mm³	
PROPRIEDADES GEOMETRICAS (GBTUL)			
MI=	59498,9	kN*mm	
Mdist=	20995,55	kN*mm	
NI=	878,74	kN	
Ndist=	664,67	kN	

Perfil 4

Perfil 5

SOLICITANTE (RETIRADO DO ROBOT)		
My,Sd=	3,8122	kN.m
Nc,Sd=	68,36	kN.m
	250000	Кра
σ=M/W -> W=M/fy		
w=	1,52488E-05	m³
w=	15248,80	mm³

DADOS DE ENTRADA		
fy=	250000	kPa
v=	0,3	
ly=	1,02466E-06	m^4
L=	?	m
bw=	0,1	m
bf=	0,04	m
t=	0,00225	m
E=	20000000	kPa
Área seção:	0,000495	m²
lz=	1,26791E-07	m^4
ry=	-0,020	m
rz=	0,04465	m
y0=	0,014	m
z0=	0,05561	m

z0=	0,05561	m
Р	ERFIL PROPOSTO ESCOL	HIDO
Perfil 5	19422 46	
(t=2,25mm) w=	10425,40	mm³
PROPRIEDADES GEOMETRICAS (GBTUL)		
MI=	34157,96	kN*mm
Mdist=	17434,38	kN*mm
NI=	249,37	kN
Ndist=	333,12	kN

Perfil 6

SOLICITANTE (RETIRADO DO ROBOT)		
My,Sd=	3,8122	kN.m
Nc,Sd=	68,36	kN.m
	250000	Кра
σ=M/W -> W=M/fy		
w=	1,52488E-05	m ³
w=	15248,80	mm ³

DADOS DE ENTRADA		
fy=	250000	kPa
v=	0,3	
ly=	1,02466E-06	m^4
L=	?	m
bw=	0,1	m
bf=	0,04	m
t=	0,003	m
E=	20000000	kPa
Área seção:	0,000661	m²
Iz=	1,26791E-07	m^4
ry=	-0,020	m
rz=	0,04465	m
y0=	0,014	m
z0=	0,05561	m

F	PERFIL PROPOSTO ESCO	LHIDO
Perfil 6	24565.01	
(t=3,00mm) w=	24505,91	mm³
PROPRIEDADES GEOMETRICAS (GBTUL)		
MI=	79745,43	kN*mm
Mdist=	31604,96	kN*mm
NI=	588,02	kN
Ndist=	635,3	kN

Perfil	7

SOLICITANTE (RETIRADO DO ROBOT)		
My,Sd=	3,8122	kN.m
Nc,Sd=	68,36	kN.m
	250000	Кра
	σ=M/W -> W=M/f	Γy
w=	1,52488E-05	m³
w=	15248,80	mm³
	DADOS DE ENTRADA	l .
fy=	250000	kPa
v=	0,3	
ly=	6,67567E-07	m^4
L=	?	m
bw=	0,1	m
bf=	0,05	m
t=	0,0012	m
E=	20000000	kPa
Área seção:	0,000290	m²
lz=	1,11459E-07	m^4
ry=	-0,025	m
rz=	0,043454	m
y0=	0,018174	m
z0=	0,0570781	m

PERFIL PROPOSTO ESCOLHIDO									
Perfil 7	11605 67/01								
(t=1,2mm) w=	11055,07401	mm³							
PROPF	S (GBTUL)								
MI=	4260,6234	kN*mm							
Mdist=	40940,69	kN*mm							
NI=	40,68	kN							
Ndist=	79,867511	kN							

Tabela - Esforços resistentes MSE x MRD e modos de instabilidade

D (1)		Comprimento 2,8m												
Perm	Método da seção efeitiva		Método da resistência direta		Nc,Rd - MSE /	/ MRd - MSE / Modo de		Verificação entre os métodos						
	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc,Rd - MRD	MRd - MRD	instabilidade	Nc,Sd<=Nc,Rd	My,Sd<=My,Rd					
1	77,361	2,974	84,394	2,974	0,917	1,00	FLT Inelástica	Aceito	Não aceito					
2	79,33	3,306	86,542	3,306	0,917	1,00	FLT Inelástica	Aceito	Não aceito					
3	75,044	3,359	81,866	3,359	0,917	1,00	FLT Inelástica	Aceito	Não aceito					
4	87,575	3,368	95,536	3,368	0,917	1,00	FLT Inelástica	Aceito	Não aceito					
5	84,425	3,779	92,1	3,779	0,917	1,00	FLT Inelástica	Aceito	Não aceito					
6	105,272	4,653	114,843	4,653	0,917	1,00	FLT Inelástica	Aceito	Aceito					
7	37,443	2,22	40,939	2,448	0,915	0,91	Flambagem Local	Não aceito	Não aceito					

D (71		Comprimento 2,4m											
Perm	Método da se	eção efeitiva	Método da res	létodo da resistência direta		d - MSE / MRd - MSE / Mod		Verificação entre os métodos					
	Nc, Rd (kN)	/Ic, Rd (kN.n	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc,Rd - MRD	MRd - MRD	instabilidade	Nc,Sd<=Nc,Rd	My,Sd<=My,Rd				
1	84,008	3,232	91,646	3,232	0,917	1,00	FLT Inelástica	Aceito	Aceito				
2	83,942	3,55	91,574	3,55	0,917	1,00	FLT Inelástica	Aceito	Aceito				
3	79,153	3,564	86,349	3,564	0,917	1,00	FLT Inelástica	Aceito	Aceito				
4	95,101	3,659	103,747	3,659	0,917	1,00	FLT Inelástica	Aceito	Aceito				
5	89,048	4,01	97,143	4,01	0,917	1,00	FLT Inelástica	Aceito	Aceito				
6	113,028	5,063	123,303	5,063	0,917	1,00	FLT Inelástica	Aceito	Aceito				
7	38,642	2,391	42,25	2,527	0,915	0,95	Flambagem Local	Não aceito	Não aceito				

D. (71	Comprimento 2 m											
Perfil	Método da seção efeitiva		Método da resistência direta		Nc,Rd - MSE / MRd - MSE /		Modo de	Verificação entre os métodos				
	Nc, Rd (kN)	Mc, Rd (kN.m	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc,Rd - MRD	MRd - MRD	instabilidade	Nc,Sd<=Nc,Rd	My,Sd<=My,Rd			
1	90,078	3,45	98,266	3,45	0,917	1,00	FLT Inelástica	Aceito	Aceito			
2	88,054	3,757	96,059	3,757	0,917	1,00	FLT Inelástica	Aceito	Aceito			
3	82,806	3,722	90,334	3,722	0,917	1,00	Plastificação	Aceito	Aceito			
4	101,973	3,906	111,243	3,906	0,917	1,00	FLT Inelástica	Aceito	Aceito			
5	93,157	4,187	101,626	4,187	0,917	1,00	Plastificação	Aceito	Aceito			
6	120,034	5,409	130,946	5,409	0,917	1,00	FLT Inelástica	Aceito	Aceito			
7	39,684	2,312	43,391	2,551	0,915	0,91	Plastificação	Não aceito	Aceito			

Douffl					Com	primento 1,8 m				
Perm	Método da s	eção efeitiva	Método da 1	resistência direta	Nc,Rd - MSE /	d - MSE / MRd - MSE / Modo de		Verificação entre os métodos		
	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc,Rd - MRD	MRd - MRD	instabilidade	Nc,Sd<=Nc,Rd	My,Sd<=My,Rd	
1	92,832	3,545	101,271	3,545	0,917	1,00	FLT Inelástica	Aceito	Aceito	
2	89,891	3,807	98,063	3,807	0,917	1,00	Plastificação	Aceito	Aceito	
3	84,435	3,722	92,111	3,722	0,917	1,00	Plastificação	Aceito	Aceito	
4	105,092	4,013	114,646	4,013	0,917	1,00	FLT Inelástica	Aceito	Aceito	
5	94,99	4,187	103,625	4,187	0,917	1,00	Plastificação	Aceito	Aceito	
6	123,193	5,559	134,392	5,559	0,917	1,00	FLT Inelástica	Aceito	Aceito	
7	40,143	2,312	43,892	2,551	0,915	0,91	Plastificação	Não aceito	Aceito	

Porfil		Comprimento 1,6m												
1 cm	Método da seção efeitiva		Método da resistência direta		Nc,Rd - MSE /	MRd - MSE /	Modo de	Verificação entre os métodos						
	Nc, Rd (kN) Mc, Rd (kN.m)		Nc, Rd (kN)	Mc, Rd (kN.m)	Nc,Rd - MRD	MRd - MRD	instabilidade	Nc,Sd<=Nc,Rd	My,Sd<=My,Rd					
1	95,368	3,555	104,038	3,555	0,917	1,00	Plastificação	Aceito	Aceito					
2	91,567	3,807	99,891	3,807	0,917	1,00	Plastificação	Aceito	Aceito					
3	85,919	3,722	93,73	3,722	0,917	1,00	Plastificação	Aceito	Aceito					
4	107,963	4,025	117,778	4,025	0,917	1,00	Plastificação	Aceito	Aceito					
5	96,66	4,187	105,447	4,187	0,917	1,00	Plastificação	Aceito	Aceito					
6	126,089	5,583	137,552	5,583	0,917	1,00	Plastificação	Aceito	Aceito					
7	40,557	2,312	44,345	2,551	0,915	0,91	Plastificação	Não aceito	Aceito					

Perfil		Comprimento 1,5m											
Term	Método da se	ção efeitiva	Método da res	sistência direta Nc,Rd - MSE /		MRd - MSE /	Modo de	Verificação en	tre os métodos				
	Nc, Rd (kN)	Ac, Rd (kN.n	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc,Rd - MRD	MRd - MRD	instabilidade	Nc,Sd<=Nc,Rd	My,Sd<=My,Rd				
1	96,547	3,555	105,324	3,555	0,917	1,00	Plastificação	Aceito	Aceito				
2	92,342	3,807	100,736	3,807	0,917	1,00	Plastificação	Aceito	Aceito				
3	86,605	3,722	94,478	3,722	0,917	1,00	Plastificação	Aceito	Aceito				
4	109,298	4,025	119,234	4,025	0,917	1,00	Plastificação	Aceito	Aceito				
5	97,431	4,187	106,288	4,187	0,917	1,00	Plastificação	Aceito	Aceito				
6	127,432	5,583	139,017	5,583	0,917	1,00	Plastificação	Aceito	Aceito				
7	40,747	2,312	44,553	2,551	0,915	0,91	Plastificação	Não aceito	Aceito				

Perfil	Comprimento 1,3m											
	Método da seção	efeitiva	Método da resistência direta		Nc,Rd - MSE /	MRd - MSE /	Modo de	Verificação en	Verificação entre os métodos			
	Nc, Rd (kN)	Mc, Rd (kN.m	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc,Rd - MRD	MRd - MRD	instabilidade	Nc,Sd<=Nc,Rd	My,Sd<=My,Rd			
1	98,714	3,555	107,688	3,555	0,917	1,00	Plastificação	Aceito	Aceito			
2	93,757	3,807	102,281	3,807	0,917	1,00	Plastificação	Aceito	Aceito			
3	87,788	3,722	95,844	3,722	0,916	1,00	Plastificação	Aceito	Aceito			
4	111,751	4,025	121,91	4,025	0,917	1,00	Plastificação	Aceito	Aceito			
5	98,839	4,187	107,825	4,187	0,917	1,00	Plastificação	Aceito	Aceito			
6	129,894	5,583	141,703	5,583	0,917	1,00	Plastificação	Aceito	Aceito			
7	41,093	2,312	44,931	2,551	0,915	0,91	Plastificação	Não aceito	Aceito			

Perfil		Comprimento 1,0m											
	Método da s	seção efeitiva	Método da 1	resistência direta	Nc,Rd - MSE /	MRd - MSE /	Modo de	Verificação en	tre os métodos				
	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc, Rd (kN)	Mc, Rd (kN.m)	Nc,Rd - MRD	MRd - MRD	instabilidade	Nc,Sd<=Nc,Rd	My,Sd<=My,Rd				
1	101,451	3,555	110,673	3,555	0,917	1,00	Plastificação	Aceito	Aceito				
2	95,531	3,807	104,216	3,807	0,917	1,00	Plastificação	Aceito	Aceito				
3	88,865	3,722	97,058	3,722	0,916	1,00	Plastificação	Aceito	Aceito				
4	114,85	4,025	125,291	4,025	0,917	1,00	Plastificação	Aceito	Aceito				
5	100,603	4,187	109,748	4,187	0,917	1,00	Plastificação	Aceito	Aceito				
6	132,993	5,583	145,084	5,583	0,917	1,00	Plastificação	Aceito	Aceito				
7	41,523	2,312	45,401	2,551	0,915	0,91	Plastificação	Não aceito	Aceito				

APÊNDICE B

CÁLCULO DAS RESISTÊNCIAS - Método da seção efeitva (MSE)												
Cálculo da força	a axial de compressão resis	stente de		С	álculo do momento	o resistente						
Ney=	168,077	kN	Início c	le escoamento da seçã	ão efetiva	Flamba	Flambagem Lateral com torção					
Equação:	kl = 7,6347 - 5,3696 η - 93,839 η2 1883 4 n4 + 2396 3 n5 - 1164 5 n6	: + 679,08 η3 - : onde: n = bf /	Equação:	ção: kl = -1276,2 + 18509 n - 105239 n2 + 311754 n3 - ção: 513225 n4 + 447141 n5 - 161357 n6 · onde: n = bf / bw		Iz=	1,11459E-07	m^4				
KI=	5,352		KI=	13,190625		Cb=	1					
Área seção:	0,000290	m²	MI=	4,016	kN*m	Me=	5,362	kN*m				
fy=	250000	kPa	Wc=	1,16957E-05	m³	λ0=	0,738481237					
v=	0,3		λp=	0,853		X FLT =	0,941714497					
ly=	6,67567E-07	m^4	W=	1,16957E-05	m³	MI=	4,016	kN*m				
L=	2,8	m	γ=	1,1		λ p =	0,828060652					
bw=	0,1	m	Wef=	1,01726E-05	m³	Wc,ef=	1,03717E-05					
bf=	0,05	m				r0=	0,0781	m				
t=	0,0012	m				ry=	-0,025	m				
γ=	1,2					rz=	0,043	m				
E=	20000000	kPa				y0=	0,018	m				
λ0=	0,66					z0=	0,057	m				
X=	0,834765986					Nez=	28,063	kN				
NI=	40,41											
λp=	1,22397118											
Aef=	0,000215	m²	MRd=	2,312	kN*m	MRd=	2,220	kN*m				
Nc,Rd=	37,443	kN	MRd=	Rd= 2,220 kN*m								

Perfil 7 – Perfil proposto com novo carregamento

	CÁLCULO	DAS RESI	STÊNCIAS - Mé	todo da resis	tência dire	eta (MRD)					
	Cálo	culo da for	ça axial de com	oressão resiste	nte de cálo	culo					
FI	ambagem Global		Flar	nbagem Local		Flambagem Distorcional					
A=	0,000290	m²	NI=	40,68	kN	Ndist=	79,867511	kN			
fy=	250000	kPa	Nc,Re=	60,541	kN	A=	0,000290	m²			
Ney=	168,077	kN	λl=	1,2199		fy=	250000	kPa			
λ0=	0,6569					λdist=	0,95293				
Nc,Re=	60,541	kN	Nc,Rl=	45,033	kN	Nc,Rdist=	56,490	kN			
Nc,Rd=	55,038	kN	Nc,Rd=	40,939	kN	Nc,Rd=	51,354	kN			
Nc,Rd=		40,939 kN									

	CÁL	CULO DAS RE	CÁLCULO DAS RESISTÊNCIAS - Método da resistência direta (MRD)												
			Cálculo do	o momento resist	ente										
Flamba	gem lateral com	n torção		Flambagem Local		Flamba	gem Distorcio	nal							
W=	0,00001170	m³	MI=	4,261	kN*m	Mdist=	40,94069	kN*m							
fy=	250000	kPa	W=	0,0000117	m³										
Me=	5,362	kN*m	λl=	0,8039		fy=	250000	kPa							
λ0=	0,7385			ocorre local		λdist=	0,26724								
X FLT =	0,941714497					ocor	re distorcional								
Mc,Re=	2,753	kN*m	Mc,Rl=	2,693	kN*m	Mc,Rdist=	2,924	kN*m							
Mc,Rd=	2,503	2,503 kN*m Mc,Rd= 2,448 kN*m Mc,Rd= 2,658 kN*m													
Mc,Rd=	2,448 kN*m														